

# SYNTHESIS AND BIOLOGICAL EVALUTION OF NEW NAPHTH[1,2-C]PYRAZOLEBENZENESULFONYLUREAS, THIOUREAS AND THEIR CYCLIZED DERIVATIVES

SALEM A.BASAIF

CHEMISTRY DEPARTMENT, FACULTY OF SCIENCE

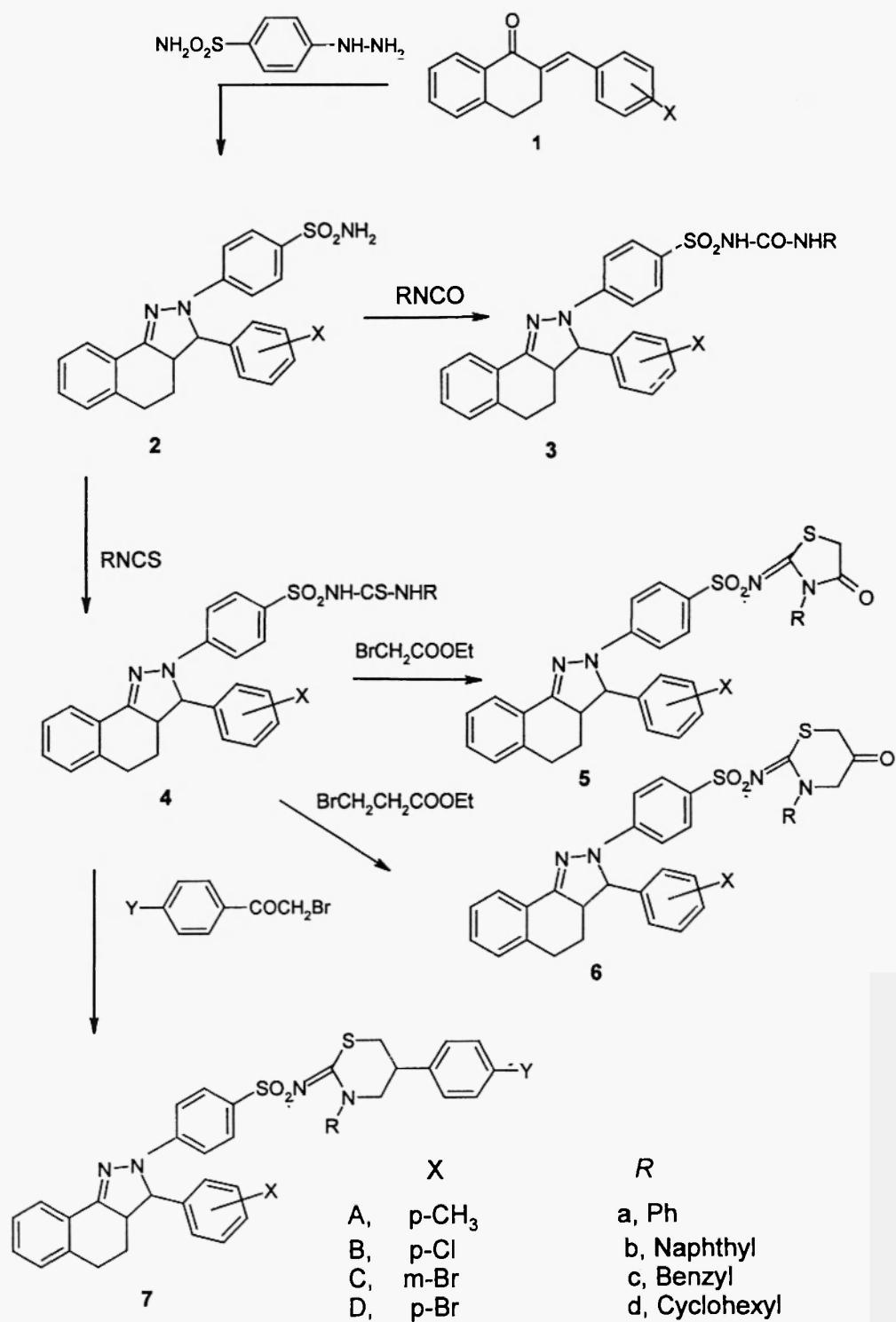
KING ABDUL AZIZ UNIVERSITY

JEDDAH 21589, P.O.BOX 80203 KINDEM OF SAUDI ARABIA

**ABSTRACT:** Five series of substituted p-(naphtho[1,2-c]pyrazol-2-yl)benzenesulfonylurea **3**, thioureas **4** as well as their cyclized derivatives **5-7** were prepared for evaluation as antibacterial agents. Preliminary biological testing revealed that some of these compounds possess weak antibacterial activity .

**Key Words:**Naphtho[1,2-c]pyrazoles, Benzenesulfonylureas, Benzenesulfonylthioureas

## INTRODUCTION


A wide variety of pharmacological properties have been encountered with substituted pyrazoles. This include antiflamarory<sup>1-3</sup>, antibacterial<sup>4-6</sup>, antifungal<sup>7</sup>, antidiabetic<sup>8-10</sup> and antiallergic<sup>11,12</sup>activities. In this report many new naphtho[1,2-c]pyrazolobenzenesulfonylurea and thiourea were prepared with the hope that they may be of potential antibacterial and antifungal action.

## RESULTS AND DISCUSSION

Condensation of 2-arylidene-1-tetralones **1A-D** with p-hydrazinobenzene sulfonamide hydrochloride afforded the corresponding naphtho[1,2-c]pyrazoline **2A-D**.

Addition of pyazolines **2** across the N=C bond of the appropriate isocyanate and isothiocyanate in dry acetone yielded the corresponding benzenesulfonylureas **3** and thioureas **4** respectively . The IR spectra of these compounds exhibited two lines at 1338-1365 cm<sup>-1</sup> and 1165-1182 cm<sup>-1</sup> due to SO<sub>2</sub>N group and a urea carbonyl line at 1649-1661 cm<sup>-1</sup> in the case of compounds **3** and a thiourea carbonyl absorption at 1083-1089cm<sup>-1</sup> in the case of compounds **4**.

Their <sup>1</sup>H NMR data are recorded in (Table 1). Cyclization of the thiourido group of compounds **4** by treatment with ethyl bromoacetate, ethyl  $\beta$ -bromopropionate and  $\alpha$ -bromoacetophenones afforded the corresponding 4-oxothiazolidine **5**, 4-oxo-5,6-dihydrothiazine **6** and thiazoline<sup>7</sup> derivatives respectively (scheme 1) . IR spectra of compounds **5** and **6** showed a cyclic carbonyl absorption at 1717-1740 cm<sup>-1</sup> and two lines at 1335-1362 cm<sup>-1</sup> and 1172-1180 cm<sup>-1</sup> for the SO<sub>2</sub>N group (Table 1) . The structures of the above compounds **5-7** were further supported by their <sup>1</sup>H NMR data which displayed signals due to aromatic and R protons, a doublet of one proton intensity at  $\delta$  5.48-5.85 and three multiplets at  $\delta$  3.45-3.82, 2.75-2.97 and 1.10-1.52 for H-3a , H-5 and H-4 respectively . In addition compounds **4,5** showed a singlet of two protons intensity at  $\delta$  3.79-4.18 for H-5' of the thiazolidinone moiety, while compounds **6** exhibited a multiplet of four protons intensity at  $\delta$  4.30-4.54 due to H-5' and H-6 of the thiazinone moiety (Table 1) . The spectral data are inadequate to show the  $\alpha$  or  $\beta$  configuration of the 3- ( p-substituted phenyl) groups in compounds **3-7** . The structure of 4-oxothiazolidine derivative **5Aa** was further supported from its mass spectrum. It did not show a molecular ion peak, but we could identify some fragments that confirmed its structure Fig 1.



Scheme 1

Table 1: Spectral Data of compounds 3-7

| Compound No. | $\tilde{\nu}$ | $\tilde{\nu}$                           | $\tilde{\nu}$ | Y    | $^1\text{H-NMR}^a$ |                 |                |                                                                                               | Others          |          | IR (KBr, $\text{cm}^{-1}$ ) |
|--------------|---------------|-----------------------------------------|---------------|------|--------------------|-----------------|----------------|-----------------------------------------------------------------------------------------------|-----------------|----------|-----------------------------|
|              |               |                                         |               |      | H-3<br>(d, 1H)     | H-1a<br>(m, 1H) | H-4<br>(m, 2H) | H-5<br>(m, 2H)                                                                                | ArH & NH<br>(m) | CO or CS |                             |
| 3Aa          | Ph            | <i>p</i> -CH <sub>3</sub>               | 5.53          | 3.80 | 1.97               | 2.96            | 7.00-8.42      | 2.30 (s, 3H, CH <sub>3</sub> ); 8.8 (s, NH)                                                   | 1649            | 3351     |                             |
| 3Ab          | Ph            | Naphthyl                                | 5.60          | 3.72 | 1.70               | 2.86            | 7.01-8.34      | 2.22 (s, 3H, CH <sub>3</sub> ); 8.6 (s, NH)                                                   | 1652            | 3352     |                             |
| 3Ba          | Ph            | <i>p</i> -Cl                            | 5.20          | 3.68 | 1.75               | 2.90            | 6.75-8.28      | 8.7 (s, NH)                                                                                   | 1658            | 3349     |                             |
| 3Bb          | Ph            | Naphthyl                                | 5.62          | 3.72 | 1.79               | 2.86            | 6.90-8.40      | 8.68 (s, NH)                                                                                  | 1656            | 3338     |                             |
| 3Bd          | Ph            | Cyclohexyl                              | 5.82          | 3.65 | 1.73               | 2.84            | 6.88-8.30      | 1.45 (2m, 11H, cyclohexyl); 8.85 (s, NH)                                                      | 1660            | 3326     |                             |
| 3Ca          | Ph            | <i>m</i> -Br                            | 5.18          | 3.58 | 1.72               | 2.90            | 6.75-8.28      | 8.78 (s, NH)                                                                                  | 1661            | 3350     |                             |
| 3Cb          | Ph            | Naphthyl                                | 5.50          | 3.62 | 1.85               | 2.85            | 6.89-8.38      | 8.65 (s, NH)                                                                                  | 1658            | 3346     |                             |
| 3Cd          | Ph            | Cyclohexyl                              | 5.78          | 3.68 | 1.75               | 2.98            | 6.82-8.30      | 1.50 (2m, 11H, cyclohexyl); 8.72 (s, NH)                                                      | 1660            | 3340     |                             |
| 4Aa          | Ph            | <i>p</i> -CH <sub>3</sub>               | 5.69          | 3.74 | 1.83               | 3.01            | 6.85-8.26      | 2.19 (s, 3H, CH <sub>3</sub> ); 8.66 (s, NH)                                                  | 1089            | 3335     |                             |
| 4Ac          | Benzyl        | <i>p</i> -CH <sub>3</sub>               | 5.70          | 3.72 | 1.78               | 2.43            | 6.80-8.25      | 2.25 (s, 3H, CH <sub>3</sub> ); 4.92 (d, 2H, CH <sub>2</sub> Ph);<br>8.62 (s, NH)             | 1085            | 3343     |                             |
| 4Ba          | Ph            | <i>p</i> -Cl                            | 5.73          | 3.89 | 1.85               | 3.09            | 6.82-8.30      | 8.80 (s, NH); 9.20 (s, NH)                                                                    | 1087            | 3328     |                             |
| 4Bc          | Benzyl        | <i>p</i> -Cl                            | 5.59          | 3.85 | 2.02               | 3.08            | 6.99-8.48      | 4.75 (s); (d, 2H, CH <sub>2</sub> Ph); 9.82 (s, NH)                                           | 1083            | 3444     |                             |
| 4Ca          | Ph            | <i>m</i> -Br                            | 5.79          | 3.89 | 1.83               | 3.01            | 6.82-8.32      | 8.78 (s, NH); 8.99 (s, NH)                                                                    | 1086            | 3401     |                             |
| 4Cc          | Benzyl        | <i>m</i> -Br                            | 5.78          | 3.90 | 1.90               | 3.10            | 6.70-8.35      | 4.71 (d, 2H, CH <sub>2</sub> Ph); 8.82 (s, NH); 8.90 (s, NH)                                  | 1085            | 3343     |                             |
| 5Aa          | Ph            | <i>p</i> -CH <sub>3</sub>               | 5.60          | 3.50 | 1.20               | 2.87            | 6.95-8.18      | 2.30 (s, 3H, CH <sub>3</sub> ); 4.12 (s, 2H, H-5')<br>(d, 2H, CH <sub>2</sub> Ph)             | 1736            |          |                             |
| 5Ac          | Benzyl        | <i>p</i> -CH <sub>3</sub>               | 5.48          | 3.55 | 1.10               | 2.88            | 6.90-8.30      | 2.31 (s, 3H, CH <sub>3</sub> ); 3.74 (s, 2H, H-5') 4.86<br>(d, 2H, CH <sub>2</sub> Ph)        | 1740            |          |                             |
| 5Ba          | Ph            | <i>p</i> -Cl                            | 5.54          | 3.82 | 1.30               | 2.41            | 7.01-8.07      | 4.05 (s, 2H, H-5')<br>4.12 (s, 2H, H-5') 4.81 (d, 2H, CH <sub>2</sub> Ph)                     | 1739            |          |                             |
| 5Bc          | Benzyl        | <i>p</i> -Cl                            | 5.79          | 3.62 | 1.28               | 2.92            | 6.82-8.25      | 4.18 (s, 2H, H-5')<br>4.08 (s, 2H, H-5') 4.87 (d, 2H, CH <sub>2</sub> Ph)                     | 1736            |          |                             |
| 5Ca          | Ph            | <i>m</i> -Br                            | 5.85          | 3.75 | 1.52               | 2.80            | 6.89-8.23      | 4.18 (s, 2H, H-5')<br>4.08 (s, 2H, H-5') 4.87 (d, 2H, CH <sub>2</sub> Ph)                     | 1738            |          |                             |
| 5Cc          | Benzyl        | <i>m</i> -Br                            | 5.75          | 3.65 | 1.29               | 2.97            | 7.00-8.20      | 4.25 (s, 3H, CH <sub>3</sub> ); 4.30 (m, 4H, H-5 & H-6)                                       | 1733            |          |                             |
| 6Aa          | Ph            | <i>p</i> -CH <sub>3</sub>               | 5.58          | 3.72 | 1.10               | 2.85            | 7.00-8.25      | 4.25 (s, 3H, CH <sub>3</sub> ); 4.30 (m, 4H, H-5 & H-6)                                       |                 |          |                             |
| 6Ac          | Benzyl        | <i>p</i> -CH <sub>3</sub>               | 5.59          | 3.80 | 1.20               | 2.86            | 6.97-8.20      | 2.29 (s, 3H, CH <sub>3</sub> ); 4.32 (m, 4H, H-5' & H-6);<br>4.79 (s, 2H, CH <sub>2</sub> Ph) | 1717            |          |                             |
| 6Ba          | Ph            | <i>p</i> -C <sub>6</sub> H <sub>4</sub> | 5.73          | 3.75 | 1.31               | 2.90            | 6.85-8.20      | 4.32 (m, 4H, H-5' & H-6);<br>4.50 (m, 4H, H-5' & H-6); 4.83 (s, 2H, CH <sub>2</sub> Ph)       | 1737            |          |                             |
| 6Bc          | Benzyl        | <i>p</i> -C <sub>6</sub> H <sub>4</sub> | 5.50          | 3.68 | 1.30               | 2.92            | 6.90-8.23      | 4.50 (m, 4H, H-5' & H-6); 4.83 (s, 2H, CH <sub>2</sub> Ph)                                    | 1735            |          |                             |
| 6Ca          | Ph            | <i>m</i> -Br                            | 5.78          | 3.82 | 1.20               | 2.85            | 6.85-8.20      | 4.45 (m, 4H, H-5' & H-6);<br>4.50 (m, 4H, H-5' & H-6); 4.83 (s, 2H, CH <sub>2</sub> Ph)       | 1720            |          |                             |
| 6Cc          | Benzyl        | <i>m</i> -Br                            | 5.85          | 3.45 | 1.28               | 2.88            | 7.00-8.25      | 4.45 (m, 4H, H-5' & H-6); 4.83 (s, 2H, CH <sub>2</sub> Ph)                                    | 1730            |          |                             |
| 7Ac          | Benzyl        | <i>p</i> -CH <sub>3</sub>               | 5.72          | 3.68 | 1.30               | 2.75            | 6.90-8.25      | 2.29 (s, 3H, CH <sub>3</sub> ); 4.38 (s, 2H, CH <sub>2</sub> Ph)                              |                 |          |                             |
| 7Bc          | Benzyl        | <i>p</i> -C <sub>6</sub> H <sub>4</sub> | 5.70          | 3.53 | 1.25               | 2.80            | 6.93-8.25      | 4.47 (s, 2H, CH <sub>2</sub> Ph)                                                              |                 |          |                             |
| 7Ca          | Ph            | <i>m</i> -Br                            | 5.70          | 3.69 | 1.31               | 2.82            | 6.90-8.10      |                                                                                               |                 |          |                             |

<sup>a</sup> solutions in mixture of CDCl<sub>3</sub> and DMSO-d<sub>6</sub>; δ in ppm

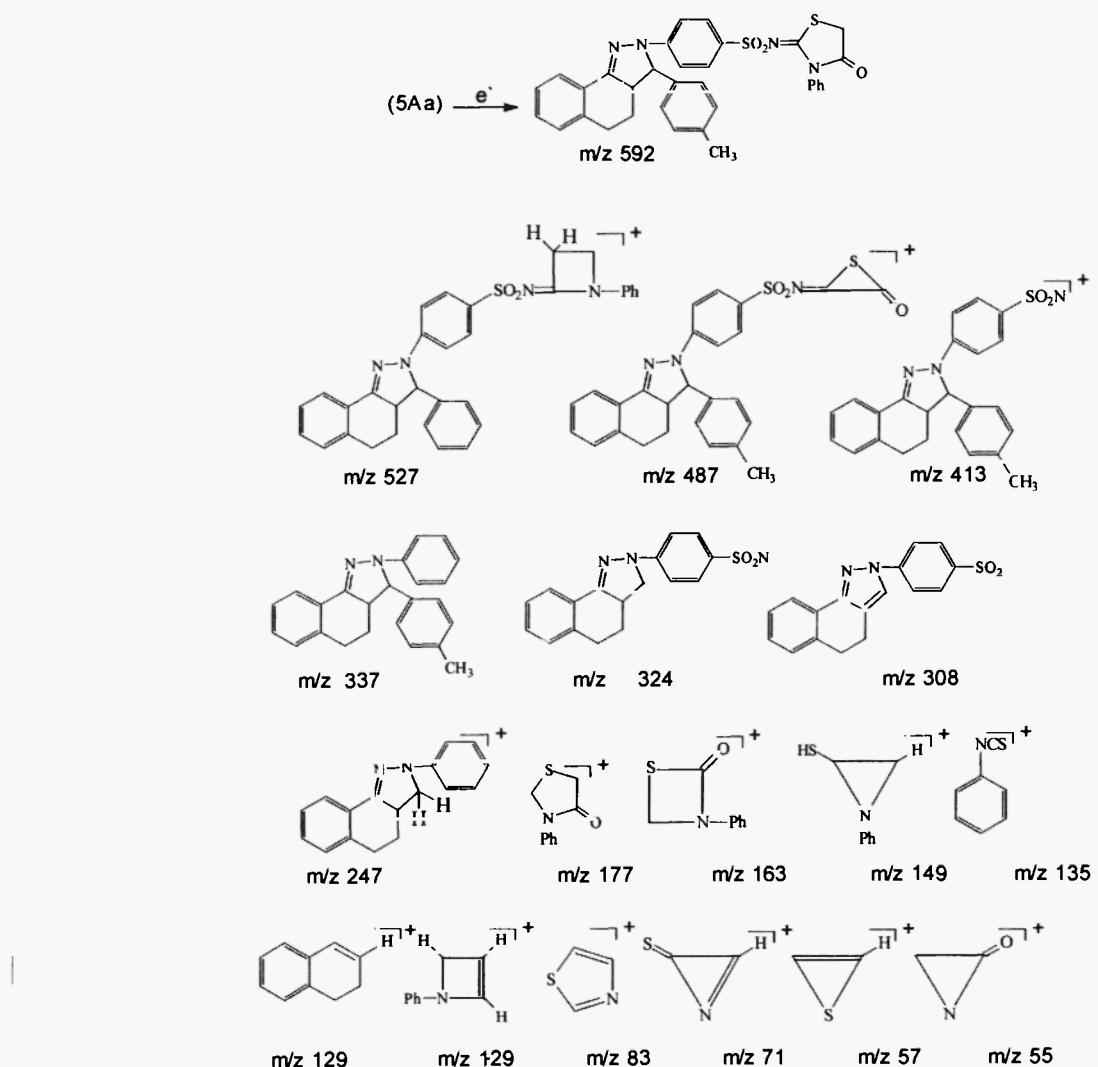



Fig. (1)

## EXPERIMENTAL SECTION

Melting points were determined on a Gallenkamp melting point apparatus and are uncorrected. IR spectra were obtained on a Magna FT 550 spectrophotometer using potassium bromide pellets . <sup>1</sup>H NMR spectra were obtained on a Varian EM 390 (90 MHz) spectrophotometer in the solvents as indicated . Chemical shifts are reported in ppm from TMS as internal standard and are given in  $\delta$  unites. MS were obtained on a Kratos MS 30 . Elemental analyses were performed by Microanalysis unit. King Abdulaziz University, Jeddah,

### Pyrazolobenzenesulfonylurea derivatives 3 (Table 2).

#### General method

A mixture of **2**<sup>13</sup> (10 mmol) and anhydrous potassium carbonate (20 mmol ) in dry acetone (25 ml ) was stirred and refluxed with the appropriate isocyanate (11 mmol) for 18 h . Acetone was removed under reduced pressure, and the solid residue was dissolved in water. The crude product was isolated by acidification with hydrochloric acid (2M) and purified by recrystallization from ethanol in needles.

### Pyrazolobenzenesulfonylthiourea derivatives 4 (Table 2).

#### General method

A mixture of **2** (10 mmol) and anhydrous potassium carbonate (20 mmol) in dry acetone (25 ml ) was stirred and refluxed for 1 h . At this temperature a solution of the appropriate isothiocyanate (15 mmol) in dry acetone (5 mL) was added dropwise . After the mixture was stirred and refluxed for 10 h, acetone was removed under reduced pressure, the solid mass was dissolved in water and acidified with HCl (2 M). The crude product was purified by recrystallization from methanol in needles .

### 3-Substituted-2-[p-(3-aryl-3,3a,4,5-tetrahydro[1,2-c]pyrazol-2-yl)benzenesulfonylimino]-4-oxothiazolidines 5 (Table 2).

A solution of the appropriate thiourea derivative (10 mmol) in absolute ethanol ( 20 ml) was refluxed with ethyl bromoacetate ( 11 mmol) and sodium acetate (20 mmol) for 2 h . The reaction mixture was then cooled and poured into ice cold water and the product that separated was recrystallized from an ethanol-benzene mixture (3:1) as needles .

### 3-Substituted-2-[p-(3-aryl-3,3a,4,5-tetrahydro[1,2-c]pyrazol-2-yl)benzenesulfonylimino)-4-oxo-5,6-dihydro-1,3-thiazines 6 (Table 2).

A solution of **4** (10 mmol) in absolute ethanol ( 20 ml) was refluxed with ethyl  $\beta$ -bromopropionate (10 mmol) and sodium acetate (20 mmol) for 2 h. The reaction mixture was then cooled and poured into water ; the precipitated thiazine was recrystallized from an ethanol-benzene mixture (3:1) as needles .

### 3-Substituted-5-aryl-4-phenyl-2-[p-(3-aryl-3,3a,4,5-tetrahydro[1,2-c]pyrazol-2-yl)-benzene sulfonyl imino]1,3-thiazolines 7( Table 2)

A solution of the corresponding thiourea derivative **4** ( 10 mmol) in absolute ethanol (20 mL) was refluxed with appropriate  $\alpha$ -bromoacetophenone (11 mmol) for 3 h . The product that separated during heating was allowed to cool, filtered and recrystallized from ethanol as yellow needles.

Table 2: Physical and Analytical Data of Compounds 3-7

| Compound No. | R          | X                 | Y                | Yield % | M.P. °C | Molecular Formula                                                                | Calculated % / Found % |              |                |                |
|--------------|------------|-------------------|------------------|---------|---------|----------------------------------------------------------------------------------|------------------------|--------------|----------------|----------------|
|              |            |                   |                  |         |         |                                                                                  | C                      | H            | N              | S              |
| 3Aa          | Ph         | p-CH <sub>3</sub> |                  | 80      | 129     | C <sub>11</sub> H <sub>26</sub> N <sub>4</sub> O <sub>3</sub> S                  | 69.38<br>69.4          | 5.12<br>5.22 | 10.63<br>10.45 | 6.00<br>5.77   |
| 3Ab          | Naphthyl   | p-CH <sub>3</sub> |                  | 82      | 233     | C <sub>13</sub> H <sub>26</sub> N <sub>4</sub> O <sub>3</sub> S                  | 71.41<br>71.67         | 5.23<br>5.21 | 9.42<br>9.56   | 5.65<br>5.46   |
| 3Ad          | Cyclohexyl | p-CH <sub>3</sub> |                  | 77      | 151     | C <sub>13</sub> H <sub>26</sub> N <sub>4</sub> O <sub>3</sub> S                  | 68.34<br>68.63         | 6.41<br>6.27 | 10.14<br>10.33 | 6.12<br>5.90   |
| 3Ba          | Ph         | p-Cl              |                  | 78      | 157     | C <sub>10</sub> H <sub>22</sub> CIN <sub>4</sub> O <sub>3</sub> S                | 64.38<br>64.69         | 4.67<br>4.49 | 9.93<br>10.06  | 5.96<br>5.75   |
| 3Bb          | Naphthyl   | p-Cl              |                  | 77      | 239     | C <sub>14</sub> H <sub>22</sub> CIN <sub>4</sub> O <sub>3</sub> S                | 67.43<br>67.27         | 4.53<br>4.45 | 9.00<br>9.23   | 5.23<br>5.28   |
| 3Bd          | Cyclohexyl | p-Cl              |                  | 78      | 202     | C <sub>13</sub> H <sub>22</sub> CIN <sub>4</sub> O <sub>3</sub> S                | 63.87<br>64.00         | 5.62<br>5.51 | 10.10<br>9.96  | 5.81<br>5.69   |
| 3Ca          | Ph         | m-Br              |                  | 76      | 152     | C <sub>10</sub> H <sub>25</sub> BrN <sub>4</sub> O <sub>3</sub> S                | 59.97<br>59.90         | 4.45<br>4.16 | 9.01<br>9.23   | 5.26<br>5.32   |
| 3Cb          | Naphthyl   | m-Br              |                  | 84      | 236     | C <sub>14</sub> H <sub>27</sub> BrN <sub>4</sub> O <sub>3</sub> S                | 62.65<br>62.67         | 4.31<br>4.15 | 8.82<br>8.60   | 4.86<br>4.92   |
| 3Cd          | Cyclohexyl | m-Br              |                  | 73      | 245     | C <sub>13</sub> H <sub>25</sub> BrN <sub>4</sub> O <sub>3</sub> S                | 59.64<br>59.31         | 4.96<br>5.11 | 9.31<br>9.22   | 5.00<br>5.27   |
| 4Aa          | Ph         | p-CH <sub>3</sub> |                  | 78      | 188     | C <sub>11</sub> H <sub>28</sub> N <sub>4</sub> O <sub>2</sub> S <sub>2</sub>     | 67.63<br>67.39         | 4.96<br>5.07 | 10.21<br>10.15 | 11.1<br>11.59  |
| 4Ac          | Benzyl     | p-CH <sub>3</sub> |                  | 85      | 171     | C <sub>12</sub> H <sub>30</sub> N <sub>4</sub> O <sub>2</sub> S <sub>2</sub>     | 67.54<br>67.85         | 5.63<br>5.30 | 9.76<br>9.89   | 11.31<br>11.31 |
| 4Ba          | Ph         | p-Cl              |                  | 84      | 220     | C <sub>10</sub> H <sub>25</sub> CIN <sub>4</sub> O <sub>2</sub> S <sub>2</sub>   | 63.00<br>62.88         | 4.13<br>4.37 | 9.56<br>9.78   | 11.52<br>11.18 |
| 4Bc          | Benzyl     | p-Cl              |                  | 82      | 201     | C <sub>11</sub> H <sub>27</sub> CIN <sub>4</sub> O <sub>2</sub> S <sub>2</sub>   | 63.15<br>63.43         | 4.32<br>4.60 | 9.86<br>9.55   | 11.16<br>10.91 |
| 4Ca          | Ph         | m-Br              |                  | 74      | 165     | C <sub>10</sub> H <sub>25</sub> BrN <sub>4</sub> O <sub>2</sub> S <sub>2</sub>   | 58.61<br>58.35         | 3.96<br>4.05 | 9.12<br>9.08   | 10.57<br>10.37 |
| 4Cc          | Benzyl     | m-Br              |                  | 78      | 170     | C <sub>11</sub> H <sub>27</sub> BrN <sub>4</sub> O <sub>2</sub> S <sub>2</sub>   | 58.62<br>58.95         | 4.18<br>4.28 | 9.00<br>8.88   | 10.40<br>10.14 |
| 5Ac          | Benzyl     | p-CH <sub>3</sub> |                  | 69      | 100     | C <sub>14</sub> H <sub>30</sub> N <sub>4</sub> O <sub>3</sub> S <sub>2</sub>     | 66.83<br>67.33         | 4.76<br>4.95 | 9.08<br>9.24   | 10.35<br>10.56 |
| 5Ba          | Ph         | p-Cl              |                  | 62      | 230     | C <sub>12</sub> H <sub>25</sub> CIN <sub>4</sub> O <sub>3</sub> S <sub>2</sub>   | 62.42<br>62.69         | 4.12<br>4.08 | 9.06<br>9.14   | 10.13<br>10.45 |
| 5Bc          | Benzyl     | p-Cl              |                  | 67      | 142     | C <sub>13</sub> H <sub>27</sub> CIN <sub>4</sub> O <sub>3</sub> S <sub>2</sub>   | 63.02<br>63.21         | 4.13<br>4.31 | 8.68<br>8.94   | 10.00<br>10.21 |
| 5Ca          | Ph         | m-Br              |                  | 69      | 248     | C <sub>12</sub> H <sub>25</sub> BrN <sub>4</sub> O <sub>3</sub> S <sub>2</sub>   | 58.76<br>58.45         | 3.62<br>3.80 | 8.26<br>8.52   | 9.53<br>9.74   |
| 5Cc          | Benzyl     | m-Br              |                  | 63      | 166     | C <sub>13</sub> H <sub>27</sub> BrN <sub>4</sub> O <sub>3</sub> S <sub>2</sub>   | 58.96<br>59.02         | 4.12<br>4.02 | 8.16<br>8.34   | 9.71<br>9.54   |
| 6Aa          | Ph         | p-CH <sub>3</sub> |                  | 67      | 107     | C <sub>14</sub> H <sub>30</sub> N <sub>4</sub> O <sub>2</sub> S <sub>2</sub>     | 67.73<br>67.33         | 4.72<br>4.95 | 9.06<br>9.24   | 10.32<br>10.56 |
| 6Ac          | Benzyl     | p-CH <sub>3</sub> |                  | 56.3    | 161     | C <sub>13</sub> H <sub>32</sub> N <sub>4</sub> O <sub>2</sub> S <sub>2</sub>     | 66.02<br>67.74         | 5.20<br>5.16 | 8.84<br>9.30   | 10.21<br>10.32 |
| 6Ba          | Ph         | p-Cl              |                  | 64      | 145     | C <sub>13</sub> H <sub>27</sub> CIN <sub>4</sub> O <sub>3</sub> S <sub>2</sub>   | 63.55<br>63.21         | 4.41<br>4.31 | 8.62<br>8.94   | 10.00<br>10.21 |
| 6Bc          | Benzyl     | p-Cl              |                  | 73      | 174     | C <sub>14</sub> H <sub>27</sub> CIN <sub>4</sub> O <sub>3</sub> S <sub>2</sub>   | 63.56<br>63.70         | 4.27<br>4.53 | 8.63<br>8.74   | 10.06<br>9.99  |
| 6Ca          | Ph         | m-Br              |                  | 63      | 149     | C <sub>13</sub> H <sub>27</sub> BrN <sub>4</sub> O <sub>3</sub> S <sub>2</sub>   | 58.95<br>59.01         | 3.98<br>4.02 | 8.64<br>8.35   | 9.32<br>9.54   |
| 6Cc          | Benzyl     | m-Br              |                  | 62.5    | 215     | C <sub>14</sub> H <sub>29</sub> BrN <sub>4</sub> O <sub>3</sub> S <sub>2</sub>   | 59.82<br>59.56         | 4.15<br>4.23 | 7.99<br>8.18   | 9.62<br>9.34   |
| 7Aa          | Ph         | p-CH <sub>3</sub> | OCH <sub>3</sub> | 65      | 88      | C <sub>10</sub> H <sub>23</sub> N <sub>4</sub> O <sub>2</sub> S <sub>2</sub>     | 70.16<br>70.38         | 4.72<br>4.99 | 8.11<br>8.21   | 9.42<br>9.38   |
| 7Ac          | Benzyl     | p-CH <sub>3</sub> | Br               | 66      | 98      | C <sub>10</sub> H <sub>23</sub> N <sub>4</sub> O <sub>2</sub> S <sub>2</sub>     | 63.87<br>64.43         | 4.21<br>4.43 | 7.40<br>7.52   | 8.30<br>8.59   |
| 7Ba          | Ph         | p-Cl              | H                | 61      | 133     | C <sub>10</sub> H <sub>29</sub> CIN <sub>4</sub> O <sub>2</sub> S <sub>2</sub>   | 66.88<br>67.81         | 4.21<br>4.31 | 8.21<br>8.33   | 9.20<br>9.52   |
| 7Bc          | Benzyl     | p-Cl              | Br               | 81      | 159     | C <sub>10</sub> H <sub>29</sub> BrCIN <sub>4</sub> O <sub>2</sub> S <sub>2</sub> | 60.98<br>61.14         | 7.19<br>7.31 | 3.96<br>4.18   | 8.06<br>8.36   |
| 7Ca          | Ph         | m-Br              | Br               | 53      | 150     | C <sub>10</sub> H <sub>29</sub> BrN <sub>4</sub> O <sub>2</sub> S <sub>2</sub>   | 57.33<br>57.29         | 3.29<br>3.52 | 6.99<br>7.03   | 7.89<br>8.04   |
| 7Cc          | Benzyl     | m-Br              | H                | 65      | 142     | C <sub>10</sub> H <sub>31</sub> BrN <sub>4</sub> O <sub>2</sub> S <sub>2</sub>   | 63.95<br>64.02         | 4.03<br>4.24 | 7.38<br>7.66   | 8.49<br>8.75   |

## BIOLOGICAL TESTING

Compounds 1-7 were screened for their antibacterial and antifungal activity following agar-diffusion method<sup>14</sup>, using Gram-positive bacteria *Staphylococcus aureus* and Gram-negative bacteria *Escherichia coli*. The antifungal testing was carried out against *Candida albicans*. A standard sterilised filter paper disc (5 mm dia) impregnated with the solution of compound in ethanol (0.1 ml<sup>-1</sup>) was placed on agar plate seeded with the test organism. The plates were incubated for 24h at 37°C and the zone of inhibition of bacterial growth around the disc was measured. Their activity was compared with that displayed by some known antibiotics taken as standard at the same concentration of solvent.

## ANTIMICROBIAL ACTIVITY

Antimicrobial testing of compounds<sup>1-7</sup> was carried out. From the screening results, it was evident that, on the whole, compounds 1A-D, 2B, 2D, 3Aa, 3Ab, 3Bd, and 4Aa showed weak activity against different strains of bacteria. Although these compounds (zone of inhibition 7-11 mm) showed activity comparable to that of penicillin G (8 mm), and Bacitracin (0 mm), they are much less active than other antibiotics used (zone of inhibition 19-26 mm) (Table 3) However all compounds are not significantly active towards *Candida albicans*.

**Table 3: Biological Activity**

| Type of organism                 | Compound No. (I-Z) [a]                                                                   | Antibiotics (I-Z)                                                                                                                     |
|----------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| <i>S. Coccus</i> (Gram-positive) | 1A(8mm), 1B(8mm), 1c(10mm)<br>1D(8mm), 2B(9mm), 2D(10mm)<br>3Aa(7mm), 3Bd(7mm), 4Aa(9mm) | Erythromycin (19mm),<br>Carbenicilin (20mm),<br>Amoxycilin (16mm),<br>Gentamicin (24mm),<br>Penicilin G (8mm),<br>Bacitracin (0.0mm), |
| <i>E. Coli</i> (Gram-negative)   | 1A(7mm), 1B(11mm), 1C(10mm),<br>1D(11mm), 2B(8mm), 3Aa(8mm),<br>3Ab(7mm), 4Aa(10mm)      | Erythromycin (20mm),<br>Carbenicilin (26mm),<br>Amoxycilin (21mm),<br>Gentamicin (22mm),<br>Penicilin G (8mm),<br>Bacitracin (0.0mm), |

[a] The other tested compounds were inactive against all tested organisms; I.Z = inhibition zone in mm

## Acknowledgement

The author wish to thank Dr. Saad B. Al-Masaydi Department of Biology for his helpful contribution and for facilities.

## REFERENCES

1. Krentzberger, A. Burgwitz, K. *Arch-Pharm.* 1979, **312**, 873.
2. Farghaly, A. M.; Shaaban, Behkit, A. A. *Arch-Pharm.* 1990, **323**, 311.
3. Patel, H. V; Fernandes, P. S. *J. Indian Chem. Soc* 1990, **67**, 321.
4. Younes, M. I. Abbas, H. H.; Metwally, S. A. M. *Arch-Pharm.* 1987, **230**, 1191.
5. Descaq, P.; Nuhrich, A.; Capdepuy, M. Devaux, G. *Eur J. Med. Chem.* 1990, **25**, 285.

6. Younes, M. I. Abbas, H. H.; Metwally, S. A. M .Pharmazie 1991, 46 , 98
7. Rich, S. ; Horsfall, J. G Phytopathology 1952, 42, 457.
8. Wright, J. B. ; Dulin, W. E. ; Markillie, J. H. J. Med. Chem. 1964, 7, 102
9. Gemtsen. G. C. ; Dulin , W.E.Diabetes 1965 ,14 , 507 .
10. Soliman, R.; Faidallah, H.; El-Sadany,S. K J. Pharm. Sci. 1987. 76, 626
- 11..Bohm, R Pharmazie. 1990, 45, 214.
12. Bohm, R Pharmazie. 1990, 45, 282.
13. Basaif, S. A.; Faidallah, H.H.; Albar, H. A.; Ba-oom, A. K.; Fawecit, J.; Russel, D.R, J. Saudi Chem. Soc., 2001 5 83.
14. Bryant, "Antibiotics and their Laboratory control", Butterworth, London 1968. P.26.

**Received on November 17, 2003.**